Blog Layout

The shifting model in clinical diagnostics: how next-generation sequencing and families are altering the way rare diseases are discovered, studied, and treated

We are the fathers of two patients with a newly diagnosed syndrome that is highlighted in the study by Enns et al.1 Our children are two among a handful of others in the world with this disease caused by mutations in the NGLY1 gene. It is the first recognized disorder of deglycosylation. We fully anticipate that NGLY1 will generate many interesting studies for years to come, but promoting NGLY1 is not our aim here. Instead, we would like to provide you with our perspective on a shift that is occurring in clinical diagnostics. Families of children with serious genetic diseases often enter a diagnostic odyssey, moving from gene to gene in the hope of finding an explanation for the condition. Two new developments in genetics promise to dramatically shorten the time to reach a successful diagnosis: next-generation sequencing (NGS) and family engagement through social media. The very speed with which Need et al.2 and Enns et al.1 were published suggests a new model for clinicians and researchers. In this model, families, patients, and scientists work jointly to find new patients, confirm or refute hypotheses, exchange clinical information, enhance collaboration methods, and support research toward understanding and treatment.


Our diagnostic quest started in the Fall of 2010, when a team at Duke University sequenced one of our children in an effort to measure the efficacy of exome sequencing in patients whose diagnostic journeys had become intractable. The team concluded that NGLY1 could be causal. This was game changing because the gene had not been implicated in any prior condition. It was difficult to know for sure whether the mutations Duke found were causal or not because there was only one affected patient. Beyond this limitation, many geneticists have raised concern that weak standards in declaring genetic diagnoses using NGS data could do real clinical harm. So why did the Duke team communicate with the family in the absence of a definitive diagnosis? They felt the family could understand this uncertainty (as many families can) and that sharing the NGLY1 suspicion would make the family partners in the discovery efforts. Following a demonstration in a molecular biology laboratory that the mutations found in the child eliminated the protein associated with the NGLY1 gene (this does not happen in the general population), Need et al.2 shared their nomination of NGLY1 as a likely (but by no means certain) cause of the condition.


Until very recently, the fragmented distribution of patients across institutions hindered the discovery of new rare diseases. Clinicians working with a single, isolated patient could steadily eliminate known disorders but do little more. Families would seek clinicians with the longest history and largest clinic volume to increase their chances of finding a second case, but what does a physician do when N = 1 or if the phenotype is inconsistent across patients? These challenges are driving an increase in the use of NGS. Yet this technological advance presents new challenges of its own. Perhaps the most daunting, in our opinion, is the inability to share sequencing data quickly and universally. Standards and bioinformatic tools are needed that allow for a national repository where families or scientists can bring clinical results and NGS data for comparison. This challenge can be circumvented by tools already created for and by the Internet and social media.


To illustrate our point, six of the eight patients presented in the accompanying article were linked together after parents, physicians, or scientists working on isolated cases searched online for “NGLY1.” They found a blog post3 describing the disorder written by the parents of the first confirmed patient. The blog chronicles the boy’s journey (initial evaluation, visits to multiple specialists, incorrect diagnoses, and ultimately the discovery of heterozygous mutations in NGLY1). It was this personal account that allowed the ordering physician, who had been tracking a second patient with NGLY1 variants, to feel confident that the two patients were suffering from the same disorder. Another patient was discovered, on a distant continent, when a parent’s Internet search for his/her child’s symptoms stumbled upon the aforementioned blog. This prompted the parents to suggest targeted NGLY1 sequencing to their child’s physician. Parent/patient-to-physician collaboration such as this is remarkable and is likely happening in other rare diseases with the advent of NGS.


As untrained people, we are not qualified to analyze whole-exome/whole-genome data. We cannot develop a therapeutic compound. We cannot design a diagnostic assay. That being said, parents can offer observations and ideas, and we can push for solutions. Nineteen months after the initial report by Need et al.,2 five viable approaches to treatment are under active consideration, thanks to relentless digging by afflicted families. One parent found a compound that seems to have measurably raised the quality of life in one NGLY1 child. Another parent read about a novel (but relevant) fluorescent assay and shared it with the NGLY1 team. The team had not heard about it, but it has become a fundamental tool in the functional analysis of NGLY1. One parent has formed and funded a multi-institutional network of researchers to tackle specific projects. The capabilities of parents and the social media are frequently underestimated; we are here to say: join us! As the discovery of new diseases explodes with the deployment of NGS, we hope clinicians will consider this model seriously.


It would be easy to write off this experience as one-off or not scalable, but it is quite real and we predict recurrence in your clinical and scientific work in the years ahead. The real pioneers of this shift were the Odones (The Myelin Project and adrenoleukodystrophy work featured in “Lorenzo’s Oil”), the Crowleys (Pompe disease, highlighted in “The Cure” and “Extraordinary Measures”), and the Marguses (Genome Bridge at Broad and leaders in ataxia–telangiectasia research), but they were just the beginning. More patients and parents are teaching themselves genetics and subtle nuances of medicine (e.g., glycobiology). This is not simple patient advocacy or grantsmanship. Those activities are present, but they are minor compared to the larger macro trend we are seeing in the democratization of rare disease discovery and treatment.


Although one of us comes from business and the other from academia, we share a common bond in information technology. We believe that information technology is transforming medical science. There are several information technology best practices in other industries that we can apply to the NGLY1 team:


Share early, share often. Collaborate across institutions, disciplines, patients, and parents. We recognize that this is easier said than done, but it is essential. Share data. Share negative results. For findings too small to be publishable, turn to the Web and publish them in short blog posts. Get the information out there. When Stanford and Baylor did whole-genome sequencing in the Fall of 2011 on an NGLY1 patient, they produced eight candidate genes (including NGLY1) to explain the phenotype. Stanford and Baylor shared their list of variant candidates quickly. It was a dialogue with clinicians, other researchers, parents, and bioinformatics experts. The teams triaged the list and worked systematically to close certain doors. Stanford and Baylor initially thought another gene was the main culprit, but functional work did not support this. Both teams continued to refine until NGLY1 was confirmed via functional assays. The lesson is that genetics is an iterative process.

Balance the bottom-up with the top-down. We recognize that much of science happens “bottom-up,” with open-ended investigations uncovering basic truths. Balance this approach with “top-down,” measurable goals that are grounded in patient’s needs. We know science takes random turns and there will be setbacks and pitfalls, but no successful business has been built without measurable goals and targeted objectives. Strike a balance.

Move fast and break things. This motto is common in Silicon Valley, but has been popularized by Facebook CEO Mark Zuckerberg. Genetics, like any branch of medicine, is justly conservative when it comes to patients (“Do no harm”). We do not suggest that you should be less thorough or loosen protocols. We simply suggest that you take risks to make discoveries, even if ideas or assays fail along the way. Failure is good. We can all build upon those failures if we share.

 


We leave you with this conclusion outside of NGLY1. In order to diagnose patients, we must admit the limitations of our medical knowledge. Sometimes the best ideas come from individuals “outside the box” (i.e., patients and parents). Pay special attention to the smallest details (e.g., lack of tear production); sometimes the least likely gene candidate is the answer. Last but not least, thank you. What you do is truly remarkable. When you have a bad day in the clinic or the laboratory, please remember that there are patients and parents out there who you do not know and who are dreaming of finding you, supporting you, and counting on you.


http://www.nature.com/gim/journal/vaop/ncurrent/full/gim201423a.html

Share this Article with others

08 Mar, 2024
The aims of our case-control study were (1) to develop an automated 3-dimensional (3D) Convolutional Neural Network (CNN) for detection of pancreatic ductal adenocarcinoma (PDA) on diagnostic computed tomography scans (CTs), (2) evaluate its generalizability on multi-institutional public data sets, (3) its utility as a potential screening tool using a simulated cohort with high pretest probability, and (4) its ability to detect visually occult preinvasive cancer on prediagnostic CTs.
08 Mar, 2024
Cancer Mutations Converge on a Collection of Protein Assemblies to Predict Resistance to Replication Stress
08 Mar, 2024
International cancer registries make real-world genomic and clinical data available, but their joint analysis remains a challenge. AACR Project GENIE, an international cancer registry collecting data from 19 cancer centers, makes data from >130,000 patients publicly available through the cBioPortal for Cancer Genomics (https://genie.cbioportal.org). For 25,000 patients, additional real-world longitudinal clinical data, including treatment and outcome data, are being collected by the AACR Project GENIE Biopharma Collaborative using the PRISSMM data curation model. Several thousand of these cases are now also available in cBioPortal. We have significantly enhanced the functionalities of cBioPortal to support the visualization and analysis of this rich clinico-genomic linked dataset, as well as datasets generated by other centers and consortia. Examples of these enhancements include (i) visualization of the longitudinal clinical and genomic data at the patient level, including timelines for diagnoses, treatments, and outcomes; (ii) the ability to select samples based on treatment status, facilitating a comparison of molecular and clinical attributes between samples before and after a specific treatment; and (iii) survival analysis estimates based on individual treatment regimens received. Together, these features provide cBioPortal users with a toolkit to interactively investigate complex clinico-genomic data to generate hypotheses and make discoveries about the impact of specific genomic variants on prognosis and therapeutic sensitivities in cancer.
08 Mar, 2024
The majority of disease-associated variants identified through genome-wide association studies are located outside of protein-coding regions. Prioritizing candidate regulatory variants and gene targets to identify potential biological mechanisms for further functional experiments can be challenging. To address this challenge, we developed FORGEdb, a standalone and web-based tool that integrates multiple datasets, delivering information on associated regulatory elements, transcription factor binding sites, and target genes for over 37 million variants. FORGEdb scores provide researchers with a quantitative assessment of the relative importance of each variant for targeted functional experiments.
By Bo Zhang 08 Mar, 2024
Cancer is a leading cause of morbidity and mortality worldwide. While progress has been made in the diagnosis, prognosis, and treatment of cancer patients, individualized and data-driven care remains a challenge. Artificial intelligence (AI), which is used to predict and automate many cancers, has emerged as a promising option for improving healthcare accuracy and patient outcomes. AI applications in oncology include risk assessment, early diagnosis, patient prognosis estimation, and treatment selection based on deep knowledge. Machine learning (ML), a subset of AI that enables computers to learn from training data, has been highly effective at predicting various types of cancer, including breast, brain, lung, liver, and prostate cancer. In fact, AI and ML have demonstrated greater accuracy in predicting cancer than clinicians. These technologies also have the potential to improve the diagnosis, prognosis, and quality of life of patients with various illnesses, not just cancer. Therefore, it is important to improve current AI and ML technologies and to develop new programs to benefit patients. This article examines the use of AI and ML algorithms in cancer prediction, including their current applications, limitations, and future prospects. Lead Author: Bo Zhang
By Claudio Luchini 08 Mar, 2024
Artificial intelligence (AI) is concretely reshaping the landscape and horizons of oncology, opening new important opportunities for improving the management of cancer patients. Analysing the AI-based devices that have already obtained the official approval by the Federal Drug Administration (FDA), here we show that cancer diagnostics is the oncology-related area in which AI is already entered with the largest impact into clinical practice. Furthermore, breast, lung and prostate cancers represent the specific cancer types that now are experiencing more advantages from AI-based devices. The future perspectives of AI in oncology are discussed: the creation of multidisciplinary platforms, the comprehension of the importance of all neoplasms, including rare tumours and the continuous support for guaranteeing its growth represent in this time the most important challenges for finalising the ‘AI-revolution’ in oncology. First Author: Claudio Luchini,
By Panayiotis Petousis, PhD 08 Mar, 2024
In the United States, end-stage kidney disease (ESKD) is responsible for high mortality and significant healthcare costs, with the number of cases sharply increasing in the past 2 decades. In this study, we aimed to reduce these impacts by developing an ESKD model for predicting its occurrence in a 2-year period.  Lead Author: Panayiotis Petousis, PhD
By Evan D. Muse 08 Mar, 2024
Transforming the cardiometabolic disease landscape: Multimodal AI-powered approaches in prevention and management Lead Author: Evan D. Muse
By Danielle S. Bitterman, MD 08 Mar, 2024
Current status and future applications of LLMs for cancer symptom management and call for cross-disciplinary collaboration that centers the needs of patients and caregivers L ead Author: Danielle S. Bitterman, MD
01 Mar, 2023
New computer systems aim to peer inside our heads—and to help us fix what they find there In the nineteen-sixties, Joseph Weizenbaum, a computer scientist at M.I.T., created a computer program called Eliza. It was designed to simulate Rogerian therapy, in which the patient directs the conversation and the therapist often repeats her language back to her: U ser : My boyfriend made me come here. E liza : Your boyfriend made you come here. U ser : He says I’m depressed much of the time. E liza : I am sorry to hear you are depressed. U ser : It’s true. I am unhappy. E liza : Do you think coming here will help you not to be unhappy? Weizenbaum made Eliza as satire. He doubted that computers could simulate meaningful human interaction. He was alarmed, therefore, when many people who tried the program found it both useful and captivating. His own secretary asked him to leave the room so that she could spend time alone with Eliza. Worse, doctors saw it as a potentially transformative tool. “Several hundred patients an hour could be handled by a computer system designed for this purpose,” three psychiatrists wrote in The Journal of Nervous and Mental Disease, in 1966. “The human therapist, involved in the design and operation of this system, would not be replaced, but would become a much more efficient man since his efforts would no longer be limited to the one-to-one patient-therapist ratio as now exists.” Weizenbaum became an outspoken critic of artificial intelligence. “But the genie was out of the bottle,” Brian Christian, who chronicled the episode in his book “The Most Human Human,” told me. A few years later, a Stanford psychiatrist named Kenneth Colby created Parry, a program that attempted to simulate the language of a person with paranoid schizophrenia, to train students before they cared for real patients. Psychiatrists given transcripts of therapy sessions often couldn’t tell the difference between Parry and humans; in this narrow sense, the chatbot passed the Turing test. In 1972, Parry and Eliza met up for a therapy session: P arry : Do you know anything about bookies? E liza : What makes you think I know anything about bookies? P arry : A bookie didn’t pay me off once. E liza : What does that suggest to you? P arry : I beat up the bookie who did not pay off, and I thought he might use his friends in the underworld to get even with me.  Over time, programmers developed Jabberwacky, Dr. Sbaitso, and alice (the Artificial Linguistic Internet Computer Entity). Exchanges with these chatbots were often engaging, sometimes comical, and occasionally nonsensical. But the idea that computers could serve as human confidants, expanding therapy’s reach beyond the limits of its overworked practitioners, persisted through the decades. In 2017, Alison Darcy, a clinical research psychologist at Stanford, founded Woebot, a company that provides automated mental-health support through a smartphone app. Its approach is based on cognitive behavioral therapy, or C.B.T.—a treatment that aims to change patterns in people’s thinking. The app uses a form of artificial intelligence called natural language processing to interpret what users say, guiding them through sequences of pre-written responses that spur them to consider how their minds could work differently. When Darcy was in graduate school, she treated dozens of hospitalized patients using C.B.T.; many experienced striking improvements but relapsed after they left the hospital. C.B.T. is “best done in small quantities over and over and over again,” she told me. In the analog world, that sort of consistent, ongoing care is hard to find: more than half of U.S. counties don’t have a single psychiatrist, and, last year, a survey conducted by the American Psychological Association found that sixty per cent of mental-health practitioners don’t have openings for new patients. “No therapist can be there with you all day, every day,” Darcy said. Although the company employs only about a hundred people, it has counseled nearly a million and a half, the majority of whom live in areas with a shortage of mental-health providers. Link to original article on The New Yorker
Share by: