Blog Layout

Precision Medicine Initiative and Cancer Research

This is a transformational moment for cancer research. Thanks to the investment by Congress in NCI and NIH research, we have arrived at a new understanding of cancer.


We now recognize that cancers are fundamentally diseases of the genome and that understanding cancer begins by identifying the abnormal genes and proteins that confer the risk of developing cancer. Identifying and analyzing these abnormalities will define how we diagnose cancer, determine how we develop and use targeted therapies to treat cancer, and shape the strategies we use to prevent cancer.


After decades of research, we are poised to enter a new era of medical practice where detailed genetic and other molecular information about a patient's cancer is routinely used to deploy effective, patient-specific remedies to treat it. We are about to enter the era of precision medicine.


FY 2016 Initiative on Precision Medicine

The President’s Budget for NCI for Fiscal Year (FY) 2016 contains funding increases for priority research to advance the field of precision medicine. As NCI focuses on oncology research under this FY 2016 initiative, increases proposed for other NIH institutes will advance precision medicine in other fields of science.


Under the Precision Medicine Initiative, NCI will assemble and analyze additional genomic data sets to increase our understanding of cancer genomes and their relationship to gene variants that a patient may have inherited. Based on the genomic information we uncover, NCI will test new therapies against childhood cancers and several common adult cancers. NCI will also develop better animal and cell-based models of cancer, study mechanisms of drug resistance, and identify new therapies and therapy combinations to overcome drug resistance. NCI will build on what it has already learned in ways that will accelerate the pace of discovery and deliver benefits to patients through clinical practice.


Under the Precision Medicine Initiative, NCI will target funding increases to three broad areas. NCI will conduct the priority activities of the initiative through competitive grants, cooperative clinical research, and research and development contracts.


For more details about how NCI will work with NIH on the Precision Medicine Initiative, see the New England Journal of Medicine editorial entitled A New Initiative on Precision Medicine.


NCI Clinical Trials to Advance Precision Medicine

Cancer presents an exceptionally promising opportunity to refine the principles and practices that will serve as the foundation for precision medicine. With additional resources in its FY 2016 budget, NCI will increase funding to support clinical trials that offer two distinct approaches to advancing precision medicine. The first approach recruits patients with all types of cancer, and then selects a targeted drug based on the specific genetic abnormalities of the patient's tumor. NCI is using this approach in its Molecular Analysis for Therapy Choice (NCI-MATCH) Program, which enrolls pediatric and adult patients with tumors that no longer respond to standard therapy. The second approach, demonstrated in the NCI Lung-MAP study, recruits patients with one type of cancer and then subdivides patients into genomically defined subsets, treating each subset with a different targeted drug.


Both types of trials have important and achievable goals:  


  • making the molecular characterization of cancers the clinical standard for accurate diagnosis and treatment
  • identifying or developing an array of treatments that can be matched to the molecular features of a tumor to successfully control the disease.

Another feature of these trials is the opportunity to link their genomic findings to clinical data, lifestyle risks such as tobacco use and obesity, environmental mutagens, and viral infections. This additional feature will become a resource to support further discovery and identify new strategies for cancer prevention, early diagnosis and early intervention.


Overcoming Drug Resistance in Cancer Treatment

A major obstacle to successfully treating cancer is the challenge of resistance either to new, targeted therapies or to traditional chemotherapies. To address this challenge, NCI will support additional research to uncover the mechanisms of resistance by:


  • developing cancer models from tissues obtained at the time of diagnosis and at relapse to uncover mechanisms of resistance to treatment
  • analyzing tumor DNA and tumor cells circulating in blood samples to develop methods to predict relapse before this problem is identified clinically or in radiologic studies
  • testing combinations of targeted agents in clinical trials to identify approaches to overcome drug resistance.

Knowledge System to Support Precision Medicine


NCI will also build information platforms to support the integration of genetic information about tumors with data on how the tumors respond to therapy. This is the knowledge system envisioned in a 2011 Institute of Medicine (IOM) report entitled Toward Precision Medicine. As the IOM recommends, the NCI system will integrate molecular and clinical knowledge in ways that are useful to both scientists and clinicians.


NCI’s knowledge system will incorporate genetic, biochemical, environmental and clinical data from patients to define molecular subtypes and identify the approaches to cancer care that will improve patient outcomes. This component of the Precision Medicine Initiative is based on the expectation that the “big data” that emerges from precision medicine trials can be used to construct models that predict, with increasing accuracy, response to treatment.


Ongoing NCI Programs that Support Precision Medicine


This FY 2016 initiative rests on a solid foundation of NCI programs that support and advance precision medicine. NCI will continue this ongoing work as it also supports new and expanded precision medicine research under the FY 2016 initiative.


NCI Translational and Therapeutic Studies: The most conspicuous application of the principles of precision medicine appears in ongoing NCI programs to identify targeted therapeutics, such as the National Clinical Trials Network (NCTN), the NCI Community Oncology Research Program (NCORP), the NCI Early Therapeutics Clinical Trials Network (ETCTN), and the NCI-MATCH Program. These programs use molecular methods to identify drugs that will deliver optimum results for treating tumors. In addition, NCI is also focusing on patients identified as exceptional responders based on their strong and favorable response to investigational drugs or conventional chemotherapy. NCI is conducting genetic assessments of tumors from these exceptional responders to learn about the basis of their favorable response.


NCI Genomics and Cancer Biology Research: In its established programs in genomics research, NCI is using high-throughput techniques to identify and study small mutations, rearrangements, and chemical modifications of DNA and to detect changes in the production of RNA and proteins. Through programs such as The Cancer Genome Atlas (TCGA), the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) Initiative, and the Cancer Target Discovery and Development (CTD2) Network, NCI is supporting research and related translational and clinical science activities that are making important advances in precision medicine. NCI also supports precision medicine research through programs such as the Tumor Microenvironment Initiative (TMEN), the Integrative Cancer Biology Program (ICBP), and through NCI intramural programs such as those focusing on genomics and chromosome biology.  


NCI Immunology and Immunotherapy Research: As NCI identifies the potential of tumors to alter their genetic code and generate potent antigens, immunotherapy is becoming an integral part of precision medicine. NCI continues to support many extramural grantees and intramural investigators who are working to treat cancers using immunotherapy.


NCI Cancer Imaging Research: The technology to precisely measure, monitor and diagnose tumor progression and regression is essential to affirm the success of precision medicine. Through programs such as NCI's Quantitative Imaging Network and The Cancer Imaging Archive, NCI is developing and refining tools to help oncologists make decisions about the optimum cancer treatment pathways for individual patients.


Finally, components of other NCI basic and translational science programs, including investigator-initiated competitive grants, NCI research and development contracts, and programs such as the RAS Initiative are also making important contributions to precision medicine, which demonstrates the breadth of NCI efforts in this field.

Share this Article with others

08 Mar, 2024
The aims of our case-control study were (1) to develop an automated 3-dimensional (3D) Convolutional Neural Network (CNN) for detection of pancreatic ductal adenocarcinoma (PDA) on diagnostic computed tomography scans (CTs), (2) evaluate its generalizability on multi-institutional public data sets, (3) its utility as a potential screening tool using a simulated cohort with high pretest probability, and (4) its ability to detect visually occult preinvasive cancer on prediagnostic CTs.
08 Mar, 2024
Cancer Mutations Converge on a Collection of Protein Assemblies to Predict Resistance to Replication Stress
08 Mar, 2024
International cancer registries make real-world genomic and clinical data available, but their joint analysis remains a challenge. AACR Project GENIE, an international cancer registry collecting data from 19 cancer centers, makes data from >130,000 patients publicly available through the cBioPortal for Cancer Genomics (https://genie.cbioportal.org). For 25,000 patients, additional real-world longitudinal clinical data, including treatment and outcome data, are being collected by the AACR Project GENIE Biopharma Collaborative using the PRISSMM data curation model. Several thousand of these cases are now also available in cBioPortal. We have significantly enhanced the functionalities of cBioPortal to support the visualization and analysis of this rich clinico-genomic linked dataset, as well as datasets generated by other centers and consortia. Examples of these enhancements include (i) visualization of the longitudinal clinical and genomic data at the patient level, including timelines for diagnoses, treatments, and outcomes; (ii) the ability to select samples based on treatment status, facilitating a comparison of molecular and clinical attributes between samples before and after a specific treatment; and (iii) survival analysis estimates based on individual treatment regimens received. Together, these features provide cBioPortal users with a toolkit to interactively investigate complex clinico-genomic data to generate hypotheses and make discoveries about the impact of specific genomic variants on prognosis and therapeutic sensitivities in cancer.
08 Mar, 2024
The majority of disease-associated variants identified through genome-wide association studies are located outside of protein-coding regions. Prioritizing candidate regulatory variants and gene targets to identify potential biological mechanisms for further functional experiments can be challenging. To address this challenge, we developed FORGEdb, a standalone and web-based tool that integrates multiple datasets, delivering information on associated regulatory elements, transcription factor binding sites, and target genes for over 37 million variants. FORGEdb scores provide researchers with a quantitative assessment of the relative importance of each variant for targeted functional experiments.
By Bo Zhang 08 Mar, 2024
Cancer is a leading cause of morbidity and mortality worldwide. While progress has been made in the diagnosis, prognosis, and treatment of cancer patients, individualized and data-driven care remains a challenge. Artificial intelligence (AI), which is used to predict and automate many cancers, has emerged as a promising option for improving healthcare accuracy and patient outcomes. AI applications in oncology include risk assessment, early diagnosis, patient prognosis estimation, and treatment selection based on deep knowledge. Machine learning (ML), a subset of AI that enables computers to learn from training data, has been highly effective at predicting various types of cancer, including breast, brain, lung, liver, and prostate cancer. In fact, AI and ML have demonstrated greater accuracy in predicting cancer than clinicians. These technologies also have the potential to improve the diagnosis, prognosis, and quality of life of patients with various illnesses, not just cancer. Therefore, it is important to improve current AI and ML technologies and to develop new programs to benefit patients. This article examines the use of AI and ML algorithms in cancer prediction, including their current applications, limitations, and future prospects. Lead Author: Bo Zhang
By Claudio Luchini 08 Mar, 2024
Artificial intelligence (AI) is concretely reshaping the landscape and horizons of oncology, opening new important opportunities for improving the management of cancer patients. Analysing the AI-based devices that have already obtained the official approval by the Federal Drug Administration (FDA), here we show that cancer diagnostics is the oncology-related area in which AI is already entered with the largest impact into clinical practice. Furthermore, breast, lung and prostate cancers represent the specific cancer types that now are experiencing more advantages from AI-based devices. The future perspectives of AI in oncology are discussed: the creation of multidisciplinary platforms, the comprehension of the importance of all neoplasms, including rare tumours and the continuous support for guaranteeing its growth represent in this time the most important challenges for finalising the ‘AI-revolution’ in oncology. First Author: Claudio Luchini,
By Panayiotis Petousis, PhD 08 Mar, 2024
In the United States, end-stage kidney disease (ESKD) is responsible for high mortality and significant healthcare costs, with the number of cases sharply increasing in the past 2 decades. In this study, we aimed to reduce these impacts by developing an ESKD model for predicting its occurrence in a 2-year period.  Lead Author: Panayiotis Petousis, PhD
By Evan D. Muse 08 Mar, 2024
Transforming the cardiometabolic disease landscape: Multimodal AI-powered approaches in prevention and management Lead Author: Evan D. Muse
By Danielle S. Bitterman, MD 08 Mar, 2024
Current status and future applications of LLMs for cancer symptom management and call for cross-disciplinary collaboration that centers the needs of patients and caregivers L ead Author: Danielle S. Bitterman, MD
01 Mar, 2023
New computer systems aim to peer inside our heads—and to help us fix what they find there In the nineteen-sixties, Joseph Weizenbaum, a computer scientist at M.I.T., created a computer program called Eliza. It was designed to simulate Rogerian therapy, in which the patient directs the conversation and the therapist often repeats her language back to her: U ser : My boyfriend made me come here. E liza : Your boyfriend made you come here. U ser : He says I’m depressed much of the time. E liza : I am sorry to hear you are depressed. U ser : It’s true. I am unhappy. E liza : Do you think coming here will help you not to be unhappy? Weizenbaum made Eliza as satire. He doubted that computers could simulate meaningful human interaction. He was alarmed, therefore, when many people who tried the program found it both useful and captivating. His own secretary asked him to leave the room so that she could spend time alone with Eliza. Worse, doctors saw it as a potentially transformative tool. “Several hundred patients an hour could be handled by a computer system designed for this purpose,” three psychiatrists wrote in The Journal of Nervous and Mental Disease, in 1966. “The human therapist, involved in the design and operation of this system, would not be replaced, but would become a much more efficient man since his efforts would no longer be limited to the one-to-one patient-therapist ratio as now exists.” Weizenbaum became an outspoken critic of artificial intelligence. “But the genie was out of the bottle,” Brian Christian, who chronicled the episode in his book “The Most Human Human,” told me. A few years later, a Stanford psychiatrist named Kenneth Colby created Parry, a program that attempted to simulate the language of a person with paranoid schizophrenia, to train students before they cared for real patients. Psychiatrists given transcripts of therapy sessions often couldn’t tell the difference between Parry and humans; in this narrow sense, the chatbot passed the Turing test. In 1972, Parry and Eliza met up for a therapy session: P arry : Do you know anything about bookies? E liza : What makes you think I know anything about bookies? P arry : A bookie didn’t pay me off once. E liza : What does that suggest to you? P arry : I beat up the bookie who did not pay off, and I thought he might use his friends in the underworld to get even with me.  Over time, programmers developed Jabberwacky, Dr. Sbaitso, and alice (the Artificial Linguistic Internet Computer Entity). Exchanges with these chatbots were often engaging, sometimes comical, and occasionally nonsensical. But the idea that computers could serve as human confidants, expanding therapy’s reach beyond the limits of its overworked practitioners, persisted through the decades. In 2017, Alison Darcy, a clinical research psychologist at Stanford, founded Woebot, a company that provides automated mental-health support through a smartphone app. Its approach is based on cognitive behavioral therapy, or C.B.T.—a treatment that aims to change patterns in people’s thinking. The app uses a form of artificial intelligence called natural language processing to interpret what users say, guiding them through sequences of pre-written responses that spur them to consider how their minds could work differently. When Darcy was in graduate school, she treated dozens of hospitalized patients using C.B.T.; many experienced striking improvements but relapsed after they left the hospital. C.B.T. is “best done in small quantities over and over and over again,” she told me. In the analog world, that sort of consistent, ongoing care is hard to find: more than half of U.S. counties don’t have a single psychiatrist, and, last year, a survey conducted by the American Psychological Association found that sixty per cent of mental-health practitioners don’t have openings for new patients. “No therapist can be there with you all day, every day,” Darcy said. Although the company employs only about a hundred people, it has counseled nearly a million and a half, the majority of whom live in areas with a shortage of mental-health providers. Link to original article on The New Yorker
Share by: